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Abstract. In this article we consider the bounds on the non-commutative nature of space-time. We argue
that these bounds are extremely model dependent. In the only phenomenologically viable framework, i.e.
when the fields are taken to be in the enveloping algebra, the constraints are fairly loose and only of
the order of a few TeV. We concentrate on the most stringent bounds that come from clock comparison
experiments. In the framework where fields are taken in the enveloping algebra, they are model independent
since these bounds are independent on choices involved with the Seiberg–Witten maps.

The aim of this work is to discuss the bounds on the
non-commutative nature of space-time. We will argue that
these bounds are extremely model dependent and in par-
ticular depend largely on whether the non-commutative
fields are Lie algebra valued or in the enveloping algebra.
For reasons that will be explained later, the only phe-
nomenological viable approach is the one where fields are
assumed to be in the enveloping algebra. It turns out that
in that case the bounds are fairly loose and are of the
order of a few TeV only.

The idea that space-time might be non-commutative
at short distances is not new and can be traced back to
Heisenberg [1], Pauli [2] and Snyder [3]. This idea was
taken very seriously recently because non-commutative
coordinates were found in a specific limit of string the-
ory. This is nevertheless not the only motivation to study
Yang–Mills theories on non-commutative spaces. In the
early days of quantum field theories, it was thought that a
fundamental cutoff might be useful to regularize the infini-
ties appearing in these theories. Nowadays it is understood
that gauge theories describing the strong and electroweak
interactions are renormalizable and thus infinities cancel,
but it might still be useful to have a fundamental cutoff
to make sense of a quantum theory of gravity, whatever
this might be. A more pragmatic approach is that space-
time could simply be non-commutative at short distances
in which case one has to understand how the standard
model can emerge as a low energy model of a Yang–Mills
theory formulated on a non-commutative space-time.

The simplest non-commutative relations one can study
are

[x̂µ, x̂ν ] ≡ x̂µx̂ν − x̂ν x̂µ = iθµν , θµν ∈ C. (1)

Postulating such relations implies that Lorentz covariance
is explicitly broken. These relations also imply uncertainty
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relations for space-time coordinates:

∆xµ∆xν ≥ 1
2
|θµν |, (2)

which are a reminiscence of the famous Heisenberg un-
certainty relations for momentum and space coordinates.
Note that θµν is a dimension-full quantity, dim(θµν) =
mass−2. If this mass scale is large enough, θµν can be used
as an expansion parameter like � in quantum mechan-
ics. We adopt the usual convention: a variable or func-
tion with a hat is a non-commutative one. It should be
noted that the relations (1) are very specific and other
relations have been considered. Other examples are Lie
structures, [x̂µ, x̂ν ] = ifµν

α x̂α, and quantum plane struc-
tures, [x̂µ, x̂ν ] = iCµν

αβx̂
αx̂β . It is known how to formulate

Yang–Mills theories on a generic Poisson structure [4].
The aim of this work is to discuss the bounds on

space-time non-commutativity appearing in the litera-
ture. It should be noted that most bounds on the non-
commutative nature of space-time come from constraints
on Lorentz invariance. These constraints are extremely
model dependent. There are different approaches to gauge
field theory on non-commutative spaces. The first ap-
proach is motivated by string theory, see e.g [5] for a re-
view. It is non-perturbative in θ and the non-local prop-
erty of the interactions is manifest. Fields are taken as
usual to be Lie algebra valued. Unfortunately it turns out
that this approach suffers from a number of drawbacks
that make it unsuitable to build realistic models for the
electroweak and strong interactions.

If fields are assumed to be Lie algebra valued, it turns
out that only U(N) structure groups are conceivable (see
[5] for a review). This approach cannot be used to describe
particle physics since we know that SU(N) groups are re-
quired to describe the weak and strong interactions. Or at
least there is no obvious way known to date to derive the
standard model as a low energy effective action coming
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from a U(N) group. Furthermore it turns out that even in
the U(1) case, charges are quantized [6,7] and it thus is
impossible to describe quarks.

There is a framework that enables one to address these
problems [8–11]. The aim of this new approach is to de-
rive low energy effective actions for the non-commutative
theory which is too complicated to handle. The match-
ing of the non-commutative action to the low energy ac-
tion on a commutative space-time is done in two steps.
First the non-commutative coordinates are mapped to
usual coordinates; the price to pay is the introduction of
a star product. Secondly the non-commutative fields are
mapped to commutative fields by means of the Seiberg–
Witten maps. The Seiberg–Witten maps [12] are defined
by the following requirement: ordinary gauge transforma-
tions δAµ = ∂µΛ + i[Λ,Aµ] and δΨ = iΛ · Ψ induce non-
commutative gauge transformations of the fields Â, Ψ̂ :
δÂµ = δ̂Âµ, δΨ̂ = δ̂Ψ̂ .

The low energy action is local in the sense that there is
no UV/IR mixing in that approach. The non-commutative
nature of space-time is encoded in the higher order oper-
ators that enter the theory. The basic assumption is that
the non-commutative fields are not Lie algebra valued but
are in the enveloping algebra:

Λ̂ = Λ0
a(x)T a + Λ1

ab(x) : T aT b : +Λ2
abc(x) : T aT bT c :

+ . . . (3)

where : : denotes some appropriate ordering of the Lie al-
gebra generators. One can choose, for example, a symmet-
rically ordered basis of the enveloping algebra, one then
has : T a := T a and : T aT b := 1

2{T a, T b} and so on. Tak-
ing fields in the enveloping of the algebra allows one to
consider SU(N) groups. At first sight it seems that one
has introduced an infinity number of degrees of freedom.
It turns out that all fields appearing in (3) can be ex-
pressed in terms of the classical gauge parameter. Higher
order terms in (3) are assumed to be suppressed by higher
powers of θ.

Expanding to linear order in θ the star product and
the non-commutative fields, one obtains the action [10]∫

¯̂
Ψ � (iγµD̂µ −m)Ψ̂d4x

=
∫
ψ̄(iγµDµ −m)ψd4x

−1
4

∫
θµνψ̄Fµν(iγαDα −m)ψd4x

−1
2

∫
θµνψ̄γρFρµiDνψd4x− 1

4
F̂µν � F̂

µνd4x

= −1
4

∫
FµνF

µνd4x+
1
8

∫
θσρFσρFµνF

µνd4x

−1
2

∫
θσρFµσFνρF

µνd4x. (4)

There are a number of difficulties which have to be
addressed in order to formulate the standard model on a
non-commutative space-time. These problems have been
solved in [11].

The first problem is that one cannot introduce three
different non-commutative gauge potentials. The reason
is that non-commutative gauge invariance is linked to the
invariance of the covariant coordinates X̂µ = x̂µ + B̂µ.
The Yang–Mills potential Aµ is related to Bµ by Bµ =
θµνAν , i.e. gauge transformations are related to transfor-
mations of the covariant coordinate. The solution is to
introduce a master field: Vµ = g′Aµ + gBµ + gSGµ that
contains all the gauge potential of the structure group
SU(3)×SU(2)×U(1) and to performed a Seiberg–Witten
map for V̂µ. Note that a generalized gauge transformation
is also introduced: Λ = g′α(x)Y + gαL(x) + gsαs(x), with
the Seiberg–Witten map Λ̂ = Λ+ 1

4θ
µν{Vν , ∂µΛ}+O(θ2).

The approach presented in [11] offers a very natu-
ral problem to the charge quantization problem. One in-
troduces n different non-commutative hyperphotons, one
for each charge entering the model: δ̂â(n)

i = ∂iλ̂
(n) +

i[λ̂(n), â
(n)
i ] with δ̂Ψ̂ (n) = ieq(n)λ̂(n) � Ψ̂ (n). At first sight,

it seems that this implies the existence of n photons in
nature, i.e. that the theory has too many degrees of free-
dom, but once again the Seiberg–Witten maps can be
used to reduce the amount of degrees of freedom. It turns
out that these n non-commutative hyperphotons have the
same classical limit ai: â

(n)
i = ai − eq(n) 1

4θ
kl{ak, ∂lai +

fli} + O(θ2), i.e. there is only one classical photon.
Another problem are the Yukawa couplings: a non-

commutative field can transform on the left-hand side or
on the right-hand side and this makes a difference. This is
an obvious complication for Yukawa couplings. For exam-
ple ¯̂

L � Φ̂ � êR is not invariant under a non-commutative
gauge transformation if Φ̂ transforms only on the right-
hand side or only on the left-hand side. The solution [11]
is to assume that it transforms on both sides to cancel the
transformations of the SU(2) doublet and of the SU(2)
singlet fields, ¯̂

L � ρL(Φ̂) � êR with

ρL(Φ̂) = Φ

[
φ,−1

2
g′Aµ + gBµ, g

′Aµ

]

and

Φ̂[Φ,A,A′] = Φ+
1
2
θµνAν

(
∂µΦ− i

2
(AµΦ− ΦA′

µ)
)

+
1
2
θµν

(
∂µΦ− i

2
(AµΦ− ΦA′

µ)
)
A′

ν .

It should be noted that the form of the operators that
enter the effective theory is very severely constrained by
the non-commutative gauge invariance. Naively one could
guess that an operator mθµν Ψ̄σµνΨ could appear in the
low energy effective action [13]. After all, the Wilsonian
approach to effective theories teaches us that an operator
not forbidden by a symmetry will enter the theory with
potentially a coefficient of order one. But it is absolutely
not clear that such an operator is compatible with the non-
commutative gauge invariance and might thus be simply
forbidden. One might argue that it is generated by a term
mθµν ¯̂

Ψσµν � Ψ̂ that is invariant under non-commutative
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gauge transformations, but such an operator makes little
sense since θµν only enters the theory through the star
product and the Seiberg–Witten maps of the fields. One
would have to show that such an operator can be gener-
ated at the loop level on the non-commutative side, which
seems doubtful since the non-commutative action is non-
perturbative in θ. One has to be very careful when effective
theory arguments are applied to these models since it is
very difficult to keep track of the fundamental symmetry
which is the non-commutative gauge invariance.

Another source of model dependence originates in the
choice of the definition of the trace in the enveloping al-
gebra and of the representation of the non-commutative
field strength F̂µν . The action for non-Abelian non-
commutative gauge bosons is

Sgauge = −1
2

∫
d4xTr

1
G2 F̂µν � F̂

µν ,

with the non-commutative field strength F̂µν , an appro-
priate trace Tr and an operator G. This operator must
commute with all generators (Y , T a

L, T b
S) of the gauge

group so that it does not spoil the trace property of Tr.
The operator G is in general a function of Y and the

Casimir operators of SU(2) and SU(3). However, due to
the assignment of hypercharges in the standard model it
is possible to express G using Y and six constants g1,
. . . , g6 corresponding to the six multiplets. In the clas-
sical limit only certain combinations of these six con-
stants, corresponding to the usual coupling constants g′,
g and gS are relevant. The relation is given by the fol-
lowing equations: 1/g2

1 + 1/(2g2
2) + 4/(3g2

3) + 1/(3g2
4) +

1/(6g2
5) + 1/(2g2

6) = 1/(2g′2), 1/g2
2 + 3/g2

5 + 1/g2
6 = 1/g2

and 1/g2
3 + 1/g2

4 + 2/g2
5 = 1/g2

S . The values of the traces,
Tr 1

G2Y 3, Tr 1
G2Y T a

LT
b
L and Tr 1

G2Y T c
ST

d
S , corresponding

to triple gauge boson vertices are thus model dependent.
One consequence is that the triple photon vertex cannot
be used to bound space-time non-commutativity. While
such an interaction can be seen as a smoking gun of space-
time non-commutativity, the bounds obtained are model
dependent and only constrain a combination of θµν and
of an unknown coupling constant. It is worth noting that
most collider studies have considered modifications of the
gauge sector to search for space-time non-commutativity;
see e.g. [14,15]. It has also been proposed to use rare de-
cays based on modifications of the Seiberg–Witten map
to search for space-time non-commutativity. While these
channels and rare decays are interesting from the discov-
ery point of view, they cannot be used to bound the non-
commutative nature of space-time itself since the rate for
these decays depend either on the choice for the trace
in the enveloping algebra or on particular choices for the
Seiberg–Witten maps.

The only model independent part of the effective ac-
tion is the fermionic sector. There are two types of model
independent bounds in the literature that are relevant to
the case where fields are taken to be in the enveloping
algebra.

The first relevant study is that of Carroll et al. [17].
They replace Fµν → fµν +Fµν in (4), where fµν is under-

stood to be a constant background field and Fµν now de-
notes a small dynamical fluctuation. Keeping only terms
up to quadratic order in the fluctuations and perform-
ing a physically irrelevant rescaling of the fields Ψ and
Aµ to maintain a conventionally normalized kinetic term,

they obtained L = 1
2 iΨ̄γµ

↔
Dµ Ψ − mΨ̄Ψ − 1

4FµνF
µν +

1
2 icµν Ψ̄γ

µ
↔
Dν Ψ − 1

4kF αβγδF
αβF γδ. They have replaced,

in this equation, the charge q in the covariant derivative
with a scaled effective value qeff =

(
1 + 1

4qf
µνθµν

)
q. The

coefficients cµν and kF αβγδ are given by cµν = − 1
2qf

λ
µ θλν

and kF αβγδ = −qfλ
αθλγηβδ + 1

2qfαγθβδ − 1
4qfαβθγδ − (α ↔

β)−(γ ↔ δ)+(αβ ↔ γδ). kF αβγδ is only very weakly con-
strained by experiments. That constraint would be model
dependent since these coefficient depends on the choice of
the representation for the non-commutative gauge fields
and thus on the way the trace in the enveloping algebra is
defined. On the other hand the coefficient cµν is accessible
through clock comparison studies and is directly related
to the fermionic sector of the action. Carroll et al. obtain
the bounds |θY Z |, |θZX | ≤ (10 TeV)2 using a rather crude
model for the 9Be nucleus wavefunction.

The other constraint on space-time non-commutativity
relevant to the case where the non-commutative fields are
taken to be in the enveloping algebra comes from a study
by Carlson at al. [18]. They study non-commutative QCD
at the one loop order. They considered the one loop cor-
rection to the quark mass and wavefunction renormaliza-
tion and performed their calculation using the low energy
effective action (4). The one loop expression needs to be
regularized, the authors of [18] choose to do so by a Pauli–
Villars regularization procedure. While they are very care-
ful not to break the classical gauge invariance, there is a
priori no guaranty that such a procedure respects the non-
commutative gauge invariance. But let us assume that the
Pauli–Villars regulator respects both symmetries. The re-
sult obtained in [18] is, keeping just the O(θ) terms,

iM(λ2,M2) =
2
3
g2{(�p−m), σµα}

×
∫

(dq)
(q2 − λ2) ((p+ q)2 −M2)

qαθµν(p+ q)ν , (5)

where {(� p −m), σµα} = (� p −m)σµα + σµα(� p −m). The
Pauli–Villars regulated amplitude is then given by M →
M(0,m2) − M(Λ2,m2) − M(0, Λ2) + M(Λ2, Λ2), where
Λ is a large mass scale. Their result is

M =
g2

96π2

({
(m− �p), Λ2θµνσµν

}
− 2

3
{
(m− �p), pµθ

µνσντp
τ lnΛ2})

, (6)

for the term leading in Λ for each Dirac structure. The
authors of [18] considered the three operators

mθµν q̄σµνq, θµν q̄σµν �Dq, and θµνDµq̄ σνρD
ρq, (7)

and obtained, using the first of these operators, the bound

θΛ2 <∼ 10−29 , (8)
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where Λ is an ultraviolet regularization scale. But these
operators enter the game in a very specific combination.
A closer look at (6) reveals that the matrix element is
vanishing. Since we are working just to first order in the
operators (7) the QCD equations of motion (i /D−m)q = 0
can be used [19]. This invalidates the bound (8) and is a
very strong indication that these operators are forbidden
by the non-commutative gauge invariance. It should be
noted that there is another approach to loop calculations
[23], where the non-commutative action is first regularized
and then the effective theory is derived using the Seiberg–
Witten maps. This approach is the most promising since
it ensures that the result of loop calculations is gauge in-
variant at the non-commutative level too. This method
has been applied to anomalies, but not yet to the calcula-
tion of observable quantities. It would be of great interest
to verify if the result obtained in this paper, i.e. the van-
ishing of the one loop contribution to the quark mass and
wavefunction renormalization, could be confirmed using
the approach developed in [23].

We have shown that the bounds on the non-
commutativity of space-time are fairly loose if fields are
taken to be in the enveloping algebra, and are only of the
order of 10 TeV. Much more effort has to be invested to de-
rive bounds on the non-commutative nature of space-time.
It is important to realize that any bound is framework de-
pendent and even in a given framework there is, most of
the time, some model dependence. We have a clear idea of
what signal would have to be interpreted as evidence for
the non-commutativity of space-time; on the other hand
bounding the non-commutative parameter θµν is a very
difficult task.

The fact that the bounds are of the order of 10 TeV
should not be taken as an indication that colliders stud-
ies are useless. It is conceivable that θµν is not a con-
stant but a more complicated function. As it has been
argued in [4], the higher order operators that describe the
non-commutative nature of space-time might very well be
energy-momentum dependent and thus only become rel-
evant at high energies or equivalently at short distance.
This should be a very strong motivation to study more
model independent contributions to particle reactions that
can be studied at the next generation of colliders. Some
work in that direction [20–22] has already been done, but
much more remains to be done.
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